Algebraic invariant curves and the integrability of polynomial systems
نویسندگان
چکیده
منابع مشابه
Darboux integrability and invariant algebraic curves for planar polynomial systems
In this paper we study the normal forms of polynomial systems having a set of given generic invariant algebraic curves. PACS numbers: 02.30.Ik, 02.10.De
متن کاملAlgebraic invariant curves of plane polynomial differential systems
We consider a plane polynomial vector field P(x, y) dx +Q(x, y) dy of degree m > 1. With each algebraic invariant curve of such a field we associate a compact Riemann surface with the meromorphic differential ω = dx/P = dy/Q. The asymptotic estimate of the degree of an arbitrary algebraic invariant curve is found. In the smooth case this estimate has already been found by Cerveau and Lins Neto ...
متن کاملMultiplicity of Invariant Algebraic Curves and Darboux Integrability
We define four different kinds of multiplicity of an invariant algebraic curve for a given polynomial vector field and investigate their relationships. After taking a closer look at the singularities and at the line of infinity, we improve the Darboux theory of integrability using these new notions of multiplicity.
متن کاملAlgebraic Invariant Curves and Algebraic First Integrals for Riccati Polynomial Differential Systems
We characterize the algebraic invariant curves for the Riccati polynomial differential systems of the form x′ = 1, y′ = a(x)y+ b(x)y+ c(x), where a(x), b(x) and c(x) are arbitrary polynomials. We also characterize their algebraic first integrals.
متن کاملAlgebraic adjoint of the polynomials-polynomial matrix multiplication
This paper deals with a result concerning the algebraic dual of the linear mapping defined by the multiplication of polynomial vectors by a given polynomial matrix over a commutative field
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Applied Mathematics Letters
سال: 1993
ISSN: 0893-9659
DOI: 10.1016/0893-9659(93)90123-5